
RISC-V BF16 Extensions
Version 1.0, 05 July 2024: Ratified

Table of Contents
Preamble. 1

Acknowledgments . 2

1. Introduction. 3

1.1. Intended Audience . 3

2. Number Format . 5

2.1. BF16 Operand Format . 5

2.2. BF16 Behavior . 5

2.2.1. Subnormal Numbers: . 5

2.2.2. Infinities: . 6

2.2.3. NaNs . 6

2.2.4. Scalar NaN Boxing . 6

2.2.5. Rounding Modes:. 7

2.2.6. Handling exceptions. 7

Underflow . 7

3. Extensions . 9

3.1. Zfbfmin - Scalar BF16 Converts . 9

3.2. Zvfbfmin - Vector BF16 Converts . 10

3.3. Zvfbfwma - Vector BF16 widening mul-add . 11

4. Instructions . 12

4.1. fcvt.bf16.s . 12

4.2. fcvt.s.bf16 . 13

4.3. vfncvtbf16.f.f.w . 14

4.4. vfwcvtbf16.f.f.v . 15

4.5. vfwmaccbf16 . 16

Bibliography . 18

Preamble
This document describes the BF16 format and instruction extensions to the RISC-V Instruction Set
Architecture.



This document is in the Frozen State

Change is extremely unlikely. A high threshold will be used, and a change will only
occur because of some truly critical issue being identified during the public review
cycle. Any other desired or needed changes can be the subject of a follow-on new
extension.


Copyright and licensure:

This work is licensed under a Creative Commons Attribution 4.0 International
License


Document Version Information:

See github.com/riscv/riscv-bfloat16 for more information.

1

http://riscv.org/spec-state
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/riscv/riscv-bfloat16

Acknowledgments
Contributors to all versions of the specification (in alphabetical order) include:

▪ GouYue

▪ Ken Dockser (Editor)

▪ Kenneth Rovers

▪ Nick Knight

▪ Nicolas Brunie

We are grateful to the other people who have helped to improve this specification through their
comments, reviews, feedback and questions.

2

mailto:kdockser@tenstorrent.com

Chapter 1. Introduction
When FP16 (officially called binary16) was first introduced by the IEEE-754 standard, it was just an
interchange format. It was intended as a space/bandwidth efficient encoding that would be used to
transfer information. This is in line with the Zfhmin extension.

However, there were some applications (notably graphics) that found that the smaller precision
and dynamic range was sufficient for their space. So, FP16 started to see some widespread adoption
as an arithmetic format. This is in line with the Zfh extension.

While it was not the intention of '754 to have FP16 be an arithmetic format, it is supported by the
standard. Even though the '754 committee recognized that FP16 was gaining popularity, the
committee decided to hold off on making it a basic format in the 2019 release. This means that a
'754 compliant implementation of binary floating point, which needs to support at least one basic
format, cannot support only FP16 - it needs to support at least one of binary32, binary64, and
binary128.

Experts working in machine learning noticed that FP16 was a much more compact way of storing
operands and often provided sufficient precision for them. However, they also found that
intermediate values were much better when accumulated into a higher precision. The final
computations were then typically converted back into the more compact FP16 encoding. This
approach has become very common in machine learning (ML) inference where the weights and
activations are stored in FP16 encodings. There was the added benefit that smaller multiplication
blocks could be created for the FP16’s smaller number of significant bits. At this point, widening
multiply-accumulate instructions became much more common. Also, more complicated dot product
instructions started to show up including those that packed two FP16 numbers in a 32-bit register,
multiplied these by another pair of FP16 numbers in another register, added these two products to
an FP32 accumulate value in a 3rd register and returned an FP32 result.

Experts working in machine learning at Google who continued to work with FP32 values noted that
the least significant 16 bits of their mantissas were not always needed for good results, even in
training. They proposed a truncated version of FP32, which was the 16 most significant bits of the
FP32 encoding. This format was named BFloat16 (or BF16). The B in BF16, stands for Brain since it
was initially introduced by the Google Brain team. Not only did they find that the number of
significant bits in BF16 tended to be sufficient for their work (despite being fewer than in FP16), but
it was very easy for them to reuse their existing data; FP32 numbers could be readily rounded to
BF16 with a minimal amount of work. Furthermore, the even smaller number of the BF16
significant bits enabled even smaller multiplication blocks to be built. Similar to FP16, BF16
multiply-accumulate widening and dot-product instructions started to proliferate.

1.1. Intended Audience
Floating-point arithmetic is a specialized subject, requiring people with many different
backgrounds to cooperate in its correct and efficient implementation. Where possible, we have
written this specification to be understandable by all, though we recognize that the motivations and
references to algorithms or other specifications and standards may be unfamiliar to those who are
not domain experts.

3

This specification anticipates being read and acted on by various people with different
backgrounds. We have tried to capture these backgrounds here, with a brief explanation of what
we expect them to know, and how it relates to the specification. We hope this aids people’s
understanding of which aspects of the specification are particularly relevant to them, and which
they may (safely!) ignore or pass to a colleague.

Software developers

These are the people we expect to write code using the instructions in this specification. They
should understand the motivations for the instructions we include, and be familiar with most of
the algorithms and outside standards to which we refer.

Computer architects

We expect architects to have some basic floating-point background. Furthermore, we expect
architects to be able to examine our instructions for implementation issues, understand how the
instructions will be used in context, and advise on how they best to fit the functionality.

Digital design engineers & micro-architects

These are the people who will implement the specification inside a core. Floating-point expertise
is assumed as not all of the corner cases are pointed out in the specification.

Verification engineers

Responsible for ensuring the correct implementation of the extension in hardware. These people
are expected to have some floating-point expertise so that they can identify and generate the
interesting corner cases --- include exceptions --- that are common in floating-point architectures
and implementations.

These are by no means the only people concerned with the specification, but they are the ones we
considered most while writing it.

4

Chapter 2. Number Format

2.1. BF16 Operand Format
BF16 bits

0671415

fracexpoS

IEEE Compliance: While BF16 (also known as BFloat16) is not an IEEE-754 standard format, it is a
valid floating-point format as defined by IEEE-754. There are three parameters that specify a
format: radix (b), number of digits in the significand (p), and maximum exponent (emax). For BF16
these values are:

Table 1. BF16
parameters

Parameter Value

radix (b) 2

significand (p) 8

emax 127

Table 2. Obligatory Floating Point Format Table

Format Sign Bits Expo Bits fraction bits padded 0s encoding bits expo max/bias expo min

FP16 1 5 10 0 16 15 -14

BF16 1 8 7 0 16 127 -126

TF32 1 8 10 13 32 127 -126

FP32 1 8 23 0 32 127 -126

FP64 1 11 52 0 64 1023 -1022

FP128 1 15 112 0 128 16,383 -16,382

2.2. BF16 Behavior
For these BF16 extensions, instruction behavior on BF16 operands is the same as for other floating-
point instructions in the RISC-V ISA. For easy reference, some of this behavior is repeated here.

2.2.1. Subnormal Numbers:

Floating-point values that are too small to be represented as normal numbers, but can still be
expressed by the format’s smallest exponent value with a "0" integer bit and at least one "1" bit in
the trailing fractional bits are called subnormal numbers. Basically, the idea is there is a trade off of
precision to support gradual underflow.

All of the BF16 instructions in the extensions defined in this specification (i.e., Zfbfmin, Zvfbfmin

5

and Zvfbfwma) fully support subnormal numbers. That is, instructions are able to accept
subnormal values as inputs and they can produce subnormal results.



Future floating-point extensions, including those that operate on BF16 values, may
chose not to support subnormal numbers. The comments about supporting
subnormal BF16 values are limited to those instructions defined in this
specification.

2.2.2. Infinities:

Infinities are used to represent values that are too large to be represented by the target format.
These are usually produced as a result of overflows (depending on the rounding mode), but can
also be provided as inputs. Infinities have a sign associated with them: there are positive infinities
and negative infinities.

Infinities are important for keeping meaningless results from being operated upon.

2.2.3. NaNs

NaN stands for Not a Number.

There are two types of NaNs: signalling (sNaN) and quiet (qNaN). No computational instruction will
ever produce an sNaN; These are only provided as input data. Operating on an sNaN will cause an
invalid operation exception. Operating on a Quiet NaN usually does not cause an exception.

QNaNs are provided as the result of an operation when it cannot be represented as a number or
infinity. For example, performing the square root of -1 will result in a qNaN because there is no real
number that can represent the result. NaNs can also be used as inputs.

NaNs include a sign bit, but the bit has no meaning.

NaNs are important for keeping meaningless results from being operated upon.

Except where otherwise explicitly stated, when the result of a floating-point operation is a qNaN, it
is the RISC-V canonical NaN. For BF16, the RISC-V canonical NaN corresponds to the pattern of
0x7fc0 which is the most significant 16 bits of the RISC-V single-precision canonical NaN.

2.2.4. Scalar NaN Boxing

RISC-V applies NaN boxing to scalar results and checks for NaN boxing when a floating-point
operation --- even a vector-scalar operation --- consumes a value from a scalar floating-point
register. If the value is properly NaN-boxed, its least significant bits are used as the operand,
otherwise it is treated as if it were the canonical QNaN.

NaN boxing is nothing more than putting the smaller encoding in the least significant bits of a
register and setting all of the more significant bits to “1”. This matches the encoding of a qNaN
(although not the canonical NaN) in the larger precision.

Nan-boxing never affects the value of the operand itself, it just changes the bits of the register that
are more significant than the operand’s most significant bit.

6

2.2.5. Rounding Modes:

As is the case with other floating-point instructions, the BF16 instructions support all 5 RISC-V
Floating-point rounding modes. These modes can be specified in the rm field of scalar instructions
as well as in the frm CSR

Table 3. RISC-V Floating Point Rounding Modes

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards −∞)

011 RUP Round Up (towards +∞)

100 RMM Round to Nearest, ties to Max Magnitude

As with other scalar floating-point instructions, the rounding mode field rm can also take on the DYN
encoding, which indicates that the instruction uses the rounding mode specified in the frm CSR.

Table 4. Additional encoding for the rm field of scalar instructions

Rounding Mode Mnemonic Meaning

111 DYN select dynamic rounding mode

In practice, the default IEEE rounding mode (round to nearest, ties to even) is generally used for
arithmetic.

2.2.6. Handling exceptions

RISC-V supports IEEE-defined default exception handling. BF16 is no exception.

Default exception handling, as defined by IEEE, is a simple and effective approach to producing
results in exceptional cases. For the coder to be able to see what has happened, and take further
action if needed, BF16 instructions set floating-point exception flags the same way as all other
floating-point instructions in RISC-V.

Underflow

The IEEE-defined underflow exception requires that a result be inexact and tiny, where tininess can
be detected before or after rounding. In RISC-V, tininess is detected after rounding.

It is important to note that the detection of tininess after rounding requires its own rounding that is
different from the final result rounding. This tininess detection requires rounding as if the
exponent were unbounded. This means that the input to the rounder is always a normal number.
This is different from the final result rounding where the input to the rounder is a subnormal
number when the value is too small to be represented as a normal number in the target format.
The two different roundings can result in underflow being signalled for results that are rounded
back to the normal range.

7

As is defined in '754, under default exception handling, underflow is only signalled when the result
is tiny and inexact. In such a case, both the underflow and inexact flags are raised.

8

Chapter 3. Extensions
The group of extensions introduced by the BF16 Instruction Set Extensions is listed here.

Detection of individual BF16 extensions uses the unified software-based RISC-V discovery method.

 At the time of writing, these discovery mechanisms are still a work in progress.

The BF16 extensions defined in this specification (i.e., Zfbfmin, Zvfbfmin, and Zvfbfwma) depend on
the single-precision floating-point extension F. Furthermore, the vector BF16 extensions
(i.e.,Zvfbfmin, and Zvfbfwma) depend on the "V" Vector Extension for Application Processors or the
Zve32f Vector Extension for Embedded Processors.

As stated later in this specification, there exists a dependency between the newly defined
extensions: Zvfbfwma depends on Zfbfmin and Zvfbfmin.

This initial set of BF16 extensions provides very basic functionality including scalar and vector
conversion between BF16 and single-precision values, and vector widening multiply-accumulate
instructions.

3.1. Zfbfmin - Scalar BF16 Converts
This extension provides the minimal set of instructions needed to enable scalar support of the BF16
format. It enables BF16 as an interchange format as it provides conversion between BF16 values
and FP32 values.

This extension requires the single-precision floating-point extension F, and the FLH, FSH, FMV.X.H, and
FMV.H.X instructions as defined in the Zfh extension.



While conversion instructions tend to include all supported formats, in these
extensions we only support conversion between BF16 and FP32 as we are
targeting a special use case. These extensions are intended to support the case
where BF16 values are used as reduced precision versions of FP32 values, where
use of BF16 provides a two-fold advantage for storage, bandwidth, and
computation. In this use case, the BF16 values are typically multiplied by each
other and accumulated into FP32 sums. These sums are typically converted to
BF16 and then used as subsequent inputs. The operations on the BF16 values can
be performed on the CPU or a loosely coupled coprocessor.

Subsequent extensions might provide support for native BF16 arithmetic. Such
extensions could add additional conversion instructions to allow all supported
formats to be converted to and from BF16.



BF16 addition, subtraction, multiplication, division, and square-root operations
can be faithfully emulated by converting the BF16 operands to single-precision,
performing the operation using single-precision arithmetic, and then converting
back to BF16. Performing BF16 fused multiply-addition using this method can
produce results that differ by 1-ulp on some inputs for the RNE and RMM rounding

9

modes.

Conversions between BF16 and formats larger than FP32 can be emulated. Exact
widening conversions from BF16 can be synthesized by first converting to FP32
and then converting from FP32 to the target precision. Conversions narrowing to
BF16 can be synthesized by first converting to FP32 through a series of halving
steps and then converting from FP32 to the target precision. As with the fused
multiply-addition instruction described above, this method of converting values to
BF16 can be off by 1-ulp on some inputs for the RNE and RMM rounding modes.

Mnemonic Instruction

FCVT.BF16.S Convert FP32 to BF16

FCVT.S.BF16 Convert BF16 to FP32

FLH

FSH

FMV.H.X

FMV.X.H

3.2. Zvfbfmin - Vector BF16 Converts
This extension provides the minimal set of instructions needed to enable vector support of the BF16
format. It enables BF16 as an interchange format as it provides conversion between BF16 values
and FP32 values.

This extension requires either the "V" extension or the Zve32f embedded vector extension.



While conversion instructions tend to include all supported formats, in these
extensions we only support conversion between BF16 and FP32 as we are
targeting a special use case. These extensions are intended to support the case
where BF16 values are used as reduced precision versions of FP32 values, where
use of BF16 provides a two-fold advantage for storage, bandwidth, and
computation. In this use case, the BF16 values are typically multiplied by each
other and accumulated into FP32 sums. These sums are typically converted to
BF16 and then used as subsequent inputs. The operations on the BF16 values can
be performed on the CPU or a loosely coupled coprocessor.

Subsequent extensions might provide support for native BF16 arithmetic. Such
extensions could add additional conversion instructions to allow all supported
formats to be converted to and from BF16.



BF16 addition, subtraction, multiplication, division, and square-root operations
can be faithfully emulated by converting the BF16 operands to single-precision,
performing the operation using single-precision arithmetic, and then converting
back to BF16. Performing BF16 fused multiply-addition using this method can
produce results that differ by 1-ulp on some inputs for the RNE and RMM rounding

10

modes.

Conversions between BF16 and formats larger than FP32 can be faithfully
emulated. Exact widening conversions from BF16 can be synthesized by first
converting to FP32 and then converting from FP32 to the target precision.
Conversions narrowing to BF16 can be synthesized by first converting to FP32
through a series of halving steps using vector round-towards-odd narrowing
conversion instructions (vfncvt.rod.f.f.w). The final convert from FP32 to BF16
would use the desired rounding mode.

Mnemonic Instruction

vfncvtbf16.f.f.w Vector convert FP32 to BF16

vfwcvtbf16.f.f.v Vector convert BF16 to FP32

3.3. Zvfbfwma - Vector BF16 widening mul-add
This extension provides a vector widening BF16 mul-add instruction that accumulates into FP32.

This extension requires the Zvfbfmin extension and the Zfbfmin extension.

Mnemonic Instruction

VFWMACCBF16 Vector BF16 widening multiply-accumulate

11

Chapter 4. Instructions

4.1. fcvt.bf16.s
Synopsis

Convert FP32 value to a BF16 value

Mnemonic

fcvt.bf16.s rd, rs1

Encoding

0671112141519202425262731

1010011rdrmrs1010001001000

OP-FPbf16.shfcvt



Encoding

While the mnemonic of this instruction is consistent with that of the other RISC-V
floating-point convert instructions, a new encoding is used in bits 24:20.

BF16.S and H are used to signify that the source is FP32 and the destination is BF16.

Description

Narrowing convert FP32 value to a BF16 value. Round according to the RM field.

This instruction is similar to other narrowing floating-point-to-floating-point conversion
instructions.

Exceptions: Overflow, Underflow, Inexact, Invalid

Included in: Zfbfmin

12

4.2. fcvt.s.bf16
Synopsis

Convert BF16 value to an FP32 value

Mnemonic

fcvt.s.bf16 rd, rs1

Encoding

0671112141519202425262731

1010011rdrmrs1001100001000

OP-FPbf16sfcvt



Encoding

While the mnemonic of this instruction is consistent with that of the other RISC-V
floating-point convert instructions, a new encoding is used in bits 24:20 to indicate
that the source is BF16.

Description

Converts a BF16 value to an FP32 value. The conversion is exact.

This instruction is similar to other widening floating-point-to-floating-point conversion instructions.



If the input is normal or infinity, the BF16 encoded value is shifted to the left by 16
places and the least significant 16 bits are written with 0s.

The result is NaN-boxed by writing the most significant FLEN-32 bits with 1s.

Exceptions: Invalid

Included in: Zfbfmin

13

4.3. vfncvtbf16.f.f.w
Synopsis

Vector convert FP32 to BF16

Mnemonic

vfncvtbf16.f.f.w vd, vs2, vm

Encoding

06711121415192024252631

1010111vd00111101vs2vm010010

OP-VOPFVVvfncvtbf16VFUNARY0

Reserved Encodings

• SEW is any value other than 16

Arguments

Register Direction EEW Definition

Vs2 input 32 FP32 Source

Vd output 16 BF16 Result

Description

Narrowing convert from FP32 to BF16. Round according to the frm register.

This instruction is similar to vfncvt.f.f.w which converts a floating-point value in a 2*SEW-width
format into an SEW-width format. However, here the SEW-width format is limited to BF16.

Exceptions: Overflow, Underflow, Inexact, Invalid

Included in: Zvfbfmin

14

4.4. vfwcvtbf16.f.f.v
Synopsis

Vector convert BF16 to FP32

Mnemonic

vfwcvtbf16.f.f.v vd, vs2, vm

Encoding

06711121415192024252631

1010111vd00101101vs2vm010010

OP-VOPFVVvfwcvtbf16VFUNARY0

Reserved Encodings

• SEW is any value other than 16

Arguments

Register Direction EEW Definition

Vs2 input 16 BF16 Source

Vd output 32 FP32 Result

Description

Widening convert from BF16 to FP32. The conversion is exact.

This instruction is similar to vfwcvt.f.f.v which converts a floating-point value in an SEW-width
format into a 2*SEW-width format. However, here the SEW-width format is limited to BF16.


If the input is normal or infinity, the BF16 encoded value is shifted to the left by 16
places and the least significant 16 bits are written with 0s.

Exceptions: Invalid

Included in: Zvfbfmin

15

4.5. vfwmaccbf16
Synopsis

Vector BF16 widening multiply-accumulate

Mnemonic

vfwmaccbf16.vv vd, vs1, vs2, vm
vfwmaccbf16.vf vd, rs1, vs2, vm

Encoding (Vector-Vector)

06711121415192024252631

1010111vd001vs1vs2vm111011

OP-VOPFVVvfwmaccbf16

Encoding (Vector-Scalar)

06711121415192024252631

1010111vd101rs1vs2vm111011

OP-VOPFVFvfwmaccbf16

Reserved Encodings

• SEW is any value other than 16

Arguments

Register Direction EEW Definition

Vd input 32 FP32 Accumulate

Vs1/rs1 input 16 BF16 Source

Vs2 input 16 BF16 Source

Vd output 32 FP32 Result

Description

This instruction performs a widening fused multiply-accumulate operation, where each pair of
BF16 values are multiplied and their unrounded product is added to the corresponding FP32
accumulate value. The sum is rounded according to the frm register.

In the vector-vector version, the BF16 elements are read from vs1 and vs2 and FP32 accumulate
value is read from vd. The FP32 result is written to the destination register vd.

The vector-scalar version is similar, but instead of reading elements from vs1, a scalar BF16 value is
read from the FPU register rs1.

Exceptions: Overflow, Underflow, Inexact, Invalid

Operation

This vfwmaccbf16.vv instruction is equivalent to widening each of the BF16 inputs to FP32 and
then performing an FMACC as shown in the following instruction sequence:

16

vfwcvtbf16.f.f.v T1, vs1, vm
vfwcvtbf16.f.f.v T2, vs2, vm
vfmacc.vv vd, T1, T2, vm

Likewise, vfwmaccbf16.vf is equivalent to the following instruction sequence:

fcvt.s.bf16 T1, rs1
vfwcvtbf16.f.f.v T2, vs2, vm
vfmacc.vf vd, T1, T2, vm

Included in: Zvfbfwma

17

Bibliography
754-2019 - IEEE Standard for Floating-Point Arithmetic
754-2008 - IEEE Standard for Floating-Point Arithmetic

18

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/4610935

	RISC-V BF16 Extensions
	Table of Contents
	Preamble
	Acknowledgments
	Chapter 1. Introduction
	1.1. Intended Audience

	Chapter 2. Number Format
	2.1. BF16 Operand Format
	2.2. BF16 Behavior
	2.2.1. Subnormal Numbers:
	2.2.2. Infinities:
	2.2.3. NaNs
	2.2.4. Scalar NaN Boxing
	2.2.5. Rounding Modes:
	2.2.6. Handling exceptions
	Underflow

	Chapter 3. Extensions
	3.1. Zfbfmin - Scalar BF16 Converts
	3.2. Zvfbfmin - Vector BF16 Converts
	3.3. Zvfbfwma - Vector BF16 widening mul-add

	Chapter 4. Instructions
	4.1. fcvt.bf16.s
	4.2. fcvt.s.bf16
	4.3. vfncvtbf16.f.f.w
	4.4. vfwcvtbf16.f.f.v
	4.5. vfwmaccbf16

	Bibliography

