
Chapter 4

“Smrnmi” Standard Extension for
Resumable Non-Maskable Interrupts,
Version 0.4

Warning! This draft specification may change before being accepted as standard by
RISC-V International.

The base machine-level architecture supports only unresumable non-maskable interrupts (UNMIs),
where the NMI jumps to a handler in machine mode, overwriting the current mepc and mcause

register values. If the hart had been executing machine-mode code in a trap handler, the previous
values in mepc and mcause would not be recoverable and so execution is not generally resumable.

The Smrnmi extension adds support for resumable non-maskable interrupts (RNMIs) to RISC-
V. The extension adds four new CSRs (mnepc, mncause, mnstatus, and mnscratch) to hold the
interrupted state, and one new instruction, MNRET, to resume from the RNMI handler.

4.1 RNMI Interrupt Signals

The rnmi interrupt signals are inputs to the hart. These interrupts have higher priority than any
other interrupt or exception on the hart and cannot be disabled by software. Specifically, they are
not disabled by clearing the mstatus.MIE register.

4.2 RNMI Handler Addresses

The RNMI interrupt trap handler address is implementation-defined.

RNMI also has an associated exception trap handler address, which is implementation defined.

63



64 Volume II: RISC-V Privileged Architectures V20211203

4.3 RNMI CSRs

This proposal adds additional M-mode CSRs to enable a resumable non-maskable interrupt
(RNMI).

MXLEN-1 0

mnscratch

MXLEN

Figure 4.1: Resumable NMI scratch register mnscratch.

The mnscratch CSR holds an MXLEN-bit read-write register which enables the NMI trap handler
to save and restore the context that was interrupted.

MXLEN-1 0

mnepc (WARL)

MXLEN

Figure 4.2: Resumable NMI program counter mnepc.

The mnepc CSR is an MXLEN-bit read-write register which on entry to the NMI trap handler holds
the PC of the instruction that took the interrupt.

The low bit of mnepc (mnepc[0]) is always zero. On implementations that support only
IALIGN=32, the two low bits (mnepc[1:0]) are always zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example),
then, whenever IALIGN=32, bit mnepc[1] is masked on reads so that it appears to be 0. This
masking occurs also for the implicit read by the MRET instruction. Though masked, mnepc[1]
remains writable when IALIGN=32.

mnepc is a WARL register that must be able to hold all valid virtual addresses. It need not be
capable of holding all possible invalid addresses. Prior to writing mnepc, implementations may
convert an invalid address into some other invalid address that mnepc is capable of holding.

MXLEN-1 MXLEN-2 0

1 NMI Cause (WARL)

1 MXLEN-1

Figure 4.3: Resumable NMI cause mncause.

The mncause CSR holds the reason for the NMI, with bit MXLEN-1 set to 1, and the NMI cause
encoded in the least-significant bits or zero if NMI causes are not supported.

MXLEN-1 13 12 11 10 8 7 6 4 3 2 0

Reserved MNPP (WARL) Reserved MNPV (WARL) Reserved NMIE Reserved

MXLEN-13 2 3 1 3 1 3

Figure 4.4: Resumable NMI status register mnstatus.

The mnstatus CSR holds a two-bit field, MNPP, which on entry to the trap handler holds the
privilege mode of the interrupted context, encoded in the same manner as mstatus.MPP. It also



Volume II: RISC-V Privileged Architectures V20211203 65

holds a one-bit field, MNPV, which on entry to the trap handler holds the virtualization mode of
the interrupted context, encoded in the same manner as mstatus.MPV.

mnstatus also holds the NMIE bit. When NMIE=1, nonmaskable interrupts are enabled. When
NMIE=0, all interrupts are disabled.

When NMIE=0, the hart behaves as though mstatus.MPRV were clear, regardless of the current
setting of mstatus.MPRV.

Upon reset, NMIE contains the value 0.

RNMIs are masked out of reset to give software the opportunity to initialize data structures and
devices for subsequent RNMI handling.

Software can set NMIE to 1, but attempts to clear NMIE have no effect.

Normally, only reset sequences will explicitly set the NMIE bit.

That the NMIE bit is settable does not suffice to support the nesting of RNMIs. To support
this feature in a direct manner would have required allowing software to clear the NMIE bit—a
design choice that would have contravened the concept of non-maskability.

Software that wishes to minimize the latency until the next RNMI is taken can follow the
top-half/bottom-half model, where the RNMI handler itself only enqueues a task to a task queue
then returns. The bulk of the interrupt servicing is performed later, with RNMIs enabled.

For the purposes of the WFI instruction, NMIE is a global interrupt enable, meaning that the
setting of NMIE does not affect the operation of the WFI instruction.

The other bits in mnstatus are reserved; software should write zeros and hardware implementations
should return zeros.

4.4 MNRET Instruction

MNRET is an M-mode-only instruction that uses the values in mnepc and mnstatus to return to
the program counter, privilege mode, and virtualization mode of the interrupted context. This
instruction also sets mnstatus.NMIE.

4.5 RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type
of RNMI to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus
CSR. The mnstatus.NMIE bit is cleared, masking all interrupts.

The hart then enters machine-mode and jumps to the RNMI trap handler address.



66 Volume II: RISC-V Privileged Architectures V20211203

The RNMI handler can resume original execution using the new MNRET instruction, which restores
the PC from mnepc, the privilege mode from mnstatus, and also sets mnstatus.NMIE, which re-
enables interrupts.

If the hart encounters an exception while the mnstatus.NMIE bit is clear, the actions taken are
the same as if the exception had occurred while mnstatus.NMIE were set, except that the program
counter is set to the RNMI exception trap handler address (rather than the address specified by
mtvec).

The Smrnmi extension does not change the behavior of the MRET and SRET instructions. In
particular, MRET and SRET are unaffected by the mnstatus.NMIE bit, and their execution
does not alter the mnstatus.NMIE bit.


