8.1. RNMI Interrupt Signals | Page 84
Chapter 8. "Smrnmi" Extension for Resumable Non-Maskable Interrupts, Version 0.5

g Warning! This frozen specification may change before being accepted as standard
by RISC-V International.

The base machine-level architecture supports only unresumable non-maskable interrupts (UNMIs),
where the NMI jumps to a handler in machine mode, overwriting the current mepc and mcause register
values. If the hart had been executing machine-mode code in a trap handler, the previous values in
mepc and mcause would not be recoverable and so execution is not generally resumable.

The Smrnmi extension adds support for resumable non-maskable interrupts (RNMIs) to RISC-V. The
extension adds four new CSRs (mnepc, mncause, mnstatus, and mnscratch) to hold the interrupted
state, and one new instruction, MNRET, to resume from the RNMI handler.

8.1. RNMI Interrupt Signals

The rnmi interrupt signals are inputs to the hart. These interrupts have higher priority than any other
interrupt or exception on the hart and cannot be disabled by software. Specifically, they are not
disabled by clearing the mstatus.MIE register.

8.2. RNMI Handler Addresses
The RNMI interrupt trap handler address is implementation-defined.
RNMI also has an associated exception trap handler address, which is implementation defined.
Dy For example, some implementations might use the address specified in mtvec as the
RNMI exception trap handler.

8.3. RNMI CSRs

This proposal adds additional M-mode CSRs to enable a resumable non-maskable interrupt (RNMI).

MXLEN-1 0
’ mnscratch ‘

MXLEN

Figure 38. Resumable NMI scratch register mnscratch

The mnscratch CSR holds an MXLEN-bit read-write register which enables the NMI trap handler to
save and restore the context that was interrupted.

MXLEN-1 §]
’ mnepc (WARL) ‘
MXLEN

Figure 39. Resumable NMI program counter mnepc.

The mnepc CSR is an MXLEN-bit read-write register which on entry to the NMI trap handler holds the
PC of the instruction that took the interrupt.

The low bit of mnepc (mnepc[@]) is always zero. On implementations that support only IALIGN=32, the
two low bits (mnepc[1:0]) are always zero.

The RISC-V Instruction Set Manual: Volume I1 | © RISC-V International

8.3. RNMI CSRs | Page 85

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example), then,
whenever TALIGN=32, bit mnepc[1] is masked on reads so that it appears to be 0. This masking occurs
also for the implicit read by the MRET instruction. Though masked, mnepc[1] remains writable when
[ALIGN=32.

mnepc is a WARL register that must be able to hold all valid virtual addresses. It need not be capable of
holding all possible invalid addresses. Prior to writing mnepc, implementations may convert an invalid
address into some other invalid address that mnepc is capable of holding.

MXLEN-1 MXLEN-2 0
’ Interrupt | Exception Code (WARL) ‘
1 MXLEN-1

Figure 40. Resumable NMI cause mncause.

The mncause CSR holds the reason for the NMI. If the reason is an interrupt, bit MXLEN-1 is set to 1,
and the NMI cause is encoded in the least-significant bits. If the reason is an interrupt and NMI causes
are not supported, bit MXLEN-1 is set to 1, and zero is written to the least-significant bits. If the reason
is an exception within M-mode that results in a double trap as specified in the Smdbltrp extension, bit
MXLEN-1 is set to O and the least-significant bits are set to the cause code corresponding to the
exception that precipitated the double trap.

MXLEN-1 13 12 11 10 9 8 / 6 a 3 2z 0
’ Reserved | MNPP (WARL)| Reserved| MNPELP | Reserved |MNPV (WARL)| Reserved | NMIE | Reserved ‘
MXLEN-13 2 1 1 1 1 3 1 3

Figure 41. Resumable NMI status register mnstatus.

The mnstatus CSR holds a two-bit field, MNPP, which on entry to the RNMI trap handler holds the
privilege mode of the interrupted context, encoded in the same manner as mstatus.MPP. It also holds
a one-bit field, MNPV, which on entry to the RNMI trap handler holds the virtualization mode of the
interrupted context, encoded in the same manner as mstatus.MPV.

If the Zicfilp extension is implemented, mnstatus also holds the MNPELP field, which on entry to the
RNMI trap handler holds the previous ELP state. When an RNMI trap is taken, MNPELP is set to ELP
and ELP is set to O.

mnstatus also holds the NMIE bit. When NMIE=1, nonmaskable interrupts are enabled. When
NMIE=0, all interrupts are disabled.

When NMIE=0, the hart behaves as though mstatus. MPRV were clear, regardless of the current
setting of mstatus.MPRV.

Upon reset, NMIE contains the value O.

y RNMIs are masked out of reset to give software the opportunity to initialize data
EI structures and devices for subsequent RNMI handling.

Software can set NMIE to 1, but attempts to clear NMIE have no effect.

Normally, only reset sequences will explicitly set the NMIE bit.

E‘ That the NMIE bit is settable does not suffice to support the nesting of RNMIs. To support
this feature in a direct manner would have required allowing software to clear the NMIE

The RISC-V Instruction Set Manual: Volume I1 | © RISC-V International

8.4. MNRET Instruction | Page 86
bit—a design choice that would have contravened the concept of non-maskability.

Software that wishes to minimize the latency until the next RNMI is taken can follow the
top-half/bottom-half model, where the RNMI handler itself only enqueues a task to a task
queue then returns. The bulk of the interrupt servicing is performed later, with RNMIs
enabled.

For the purposes of the WFI instruction, NMIE is a global interrupt enable, meaning that the setting of
NMIE does not affect the operation of the WFI instruction.

The other bits in mnstatus are reserved; software should write zeros and hardware implementations
should return zeros.

8.4. MNRET Instruction

MNRET is an M-mode-only instruction that uses the values in mnepc and mnstatus to return to the
program counter, privilege mode, and virtualization mode of the interrupted context. This instruction
also sets mnstatus.NMIE. If MNRET changes the privilege mode to a mode less privileged than M, it
also sets mstatus.MPRV to O. If the Zicfilp extension is implemented, then if mnstatus.MNPP holds
the value y, MNRET sets ELP to the logical AND of yLPE and mnstatus. MNPELP.

8.5. RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type of RNMI
to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus CSR. The
mnstatus.NMIE bit is cleared, masking all interrupts.

The hart then enters machine-mode and jumps to the RNMI trap handler address.

The RNMI handler can resume original execution using the new MNRET instruction, which restores
the PC from mnepc, the privilege mode from mnstatus, and also sets mnstatus.NMIE, which re-enables
interrupts.

If the hart encounters an exception while executing in M-mode with the mnstatus.NMIE bit clear, the
actions taken are the same as if the exception had occurred while mnstatus.NMIE were set, except that
the program counter is set to the RNMI exception trap handler address.

The Smrnmi extension does not change the behavior of the MRET and SRET instructions.
| yl In particular, MRET and SRET are unaffected by the mnstatus.NMIE bit, and their
execution does not alter the mnstatus.NMIE bit.

The RISC-V Instruction Set Manual: Volume I1 | © RISC-V International

	The RISC-V Instruction Set Manual: Volume II: Privileged Architecture
	Table of Contents
	Preamble
	Preface
	Chapter 1. Introduction
	1.1. RISC-V Privileged Software Stack Terminology
	1.2. Privilege Levels
	1.3. Debug Mode

	Chapter 2. Control and Status Registers (CSRs)
	2.1. CSR Address Mapping Conventions
	2.2. CSR Listing
	2.3. CSR Field Specifications
	2.3.1. Reserved Writes Preserve Values, Reads Ignore Values (WPRI)
	2.3.2. Write/Read Only Legal Values (WLRL)
	2.3.3. Write Any Values, Reads Legal Values (WARL)

	2.4. CSR Field Modulation
	2.5. Implicit Reads of CSRs
	2.6. CSR Width Modulation
	2.7. Explicit Accesses to CSRs Wider than XLEN

	Chapter 3. Machine-Level ISA, Version 1.13
	3.1. Machine-Level CSRs
	3.1.1. Machine ISA (misa) Register
	3.1.2. Machine Vendor ID (mvendorid) Register
	3.1.3. Machine Architecture ID (marchid) Register
	3.1.4. Machine Implementation ID (mimpid) Register
	3.1.5. Hart ID (mhartid) Register
	3.1.6. Machine Status (mstatus and mstatush) Registers
	3.1.6.1. Privilege and Global Interrupt-Enable Stack in mstatus register
	3.1.6.2. Base ISA Control in mstatus Register
	3.1.6.3. Memory Privilege in mstatus Register
	3.1.6.4. Endianness Control in mstatus and mstatush Registers
	3.1.6.5. Virtualization Support in mstatus Register
	3.1.6.6. Extension Context Status in mstatus Register

	3.1.7. Machine Trap-Vector Base-Address (mtvec) Register
	3.1.8. Machine Trap Delegation (medeleg and mideleg) Registers
	3.1.9. Machine Interrupt (mip and mie) Registers
	3.1.10. Hardware Performance Monitor
	3.1.11. Machine Counter-Enable (mcounteren) Register
	3.1.12. Machine Counter-Inhibit (mcountinhibit) Register
	3.1.13. Machine Scratch (mscratch) Register
	3.1.14. Machine Exception Program Counter (mepc) Register
	3.1.15. Machine Cause (mcause) Register
	3.1.16. Machine Trap Value (mtval) Register
	3.1.17. Machine Configuration Pointer (mconfigptr) Register
	3.1.18. Machine Environment Configuration (menvcfg) Register
	3.1.19. Machine Security Configuration (mseccfg) Register

	3.2. Machine-Level Memory-Mapped Registers
	3.2.1. Machine Timer (mtime and mtimecmp) Registers

	3.3. Machine-Mode Privileged Instructions
	3.3.1. Environment Call and Breakpoint
	3.3.2. Trap-Return Instructions
	3.3.3. Wait for Interrupt
	3.3.4. Custom SYSTEM Instructions

	3.4. Reset
	3.5. Non-Maskable Interrupts
	3.6. Physical Memory Attributes
	3.6.1. Main Memory versus I/O versus Vacant Regions
	3.6.2. Supported Access Type PMAs
	3.6.3. Atomicity PMAs
	3.6.3.1. AMO PMA
	3.6.3.2. Reservability PMA

	3.6.4. Misaligned Atomicity Granule PMA
	3.6.5. Memory-Ordering PMAs
	3.6.6. Coherence and Cacheability PMAs
	3.6.7. Idempotency PMAs

	3.7. Physical Memory Protection
	3.7.1. Physical Memory Protection CSRs
	3.7.1.1. Address Matching
	3.7.1.2. Locking and Privilege Mode
	3.7.1.3. Priority and Matching Logic

	3.7.2. Physical Memory Protection and Paging

	Chapter 4. "Smstateen/Ssstateen" Extensions, Version 1.0.0
	4.1. State Enable Extensions
	4.2. State Enable 0 Registers
	4.3. Usage

	Chapter 5. "Smcsrind/Sscsrind" Indirect CSR Access, Version 1.0.0
	5.1. Introduction
	5.2. Machine-level CSRs
	5.3. Supervisor-level CSRs
	5.4. Virtual Supervisor-level CSRs
	5.5. Access control by the state-enable CSRs

	Chapter 6. "Smepmp" Extension for PMP Enhancements for memory access and execution prevention in Machine mode, Version 1.0.0
	6.1. Introduction
	6.1.1. Threat model

	6.2. Proposal
	6.2.1. Truth table when mseccfg.MML is set
	6.2.2. Visual representation of the proposal

	6.3. Smepmp software discovery
	6.4. Rationale

	Chapter 7. "Smcntrpmf" Cycle and Instret Privilege Mode Filtering, Version 1.0.0
	7.1. Introduction
	7.2. CSRs
	7.2.1. Machine Counter Configuration (mcyclecfg, minstretcfg) Registers

	7.3. Counter Behavior

	Chapter 8. "Smrnmi" Extension for Resumable Non-Maskable Interrupts, Version 0.5
	8.1. RNMI Interrupt Signals
	8.2. RNMI Handler Addresses
	8.3. RNMI CSRs
	8.4. MNRET Instruction
	8.5. RNMI Operation

	Chapter 9. "Smcdeleg" Counter Delegation Extension, Version 1.0.0
	9.1. Counter Delegation
	9.2. Supervisor Counter Inhibit (scountinhibit) Register
	9.3. Virtualizing scountovf
	9.4. Virtualizing Local Counter Overflow Interrupts

	Chapter 10. Supervisor-Level ISA, Version 1.13
	10.1. Supervisor CSRs
	10.1.1. Supervisor Status (sstatus) Register
	10.1.1.1. Base ISA Control in sstatus Register
	10.1.1.2. Memory Privilege in sstatus Register
	10.1.1.3. Endianness Control in sstatus Register

	10.1.2. Supervisor Trap Vector Base Address (stvec) Register
	10.1.3. Supervisor Interrupt (sip and sie) Registers
	10.1.4. Supervisor Timers and Performance Counters
	10.1.5. Counter-Enable (scounteren) Register
	10.1.6. Supervisor Scratch (sscratch) Register
	10.1.7. Supervisor Exception Program Counter (sepc) Register
	10.1.8. Supervisor Cause (scause) Register
	10.1.9. Supervisor Trap Value (stval) Register
	10.1.10. Supervisor Environment Configuration (senvcfg) Register
	10.1.11. Supervisor Address Translation and Protection (satp) Register

	10.2. Supervisor Instructions
	10.2.1. Supervisor Memory-Management Fence Instruction

	10.3. Sv32: Page-Based 32-bit Virtual-Memory Systems
	10.3.1. Addressing and Memory Protection
	10.3.2. Virtual Address Translation Process

	10.4. Sv39: Page-Based 39-bit Virtual-Memory System
	10.4.1. Addressing and Memory Protection

	10.5. Sv48: Page-Based 48-bit Virtual-Memory System
	10.5.1. Addressing and Memory Protection

	10.6. Sv57: Page-Based 57-bit Virtual-Memory System
	10.6.1. Addressing and Memory Protection

	Chapter 11. "Svnapot" Extension for NAPOT Translation Contiguity, Version 1.0
	Chapter 12. "Svpbmt" Extension for Page-Based Memory Types, Version 1.0
	Chapter 13. "Svinval" Extension for Fine-Grained Address-Translation Cache Invalidation, Version 1.0
	Chapter 14. "Svadu" Extension for Hardware Updating of A/D Bits, Version 1.0
	Chapter 15. "Svvptc" Extension for Eliding Memory-Management Fences on Making PTEs Valid, Version 1.0
	Chapter 16. "Sstc" Extension for Supervisor-mode Timer Interrupts, Version 1.0.0
	16.1. Machine and Supervisor Level Additions
	16.1.1. Supervisor Timer (stimecmp) Register
	16.1.2. Machine Interrupt (mip and mie) Registers
	16.1.3. Supervisor Interrupt (sip and sie) Registers
	16.1.4. Machine Counter-Enable (mcounteren) Register

	16.2. Hypervisor Extension Additions
	16.2.1. Virtual Supervisor Timer (vstimecmp) Register
	16.2.2. Hypervisor Interrupt (hvip, hip, and hie) Registers
	16.2.3. Hypervisor Counter-Enable (hcounteren) Register

	16.3. Environment Config (menvcfg and henvcfg) Support

	Chapter 17. "Sscofpmf" Extension for Count Overflow and Mode-Based Filtering, Version 1.0.0
	17.1. Count Overflow Control
	17.2. Supervisor Count Overflow (scountovf) Register

	Chapter 18. "H" Extension for Hypervisor Support, Version 1.0
	18.1. Privilege Modes
	18.2. Hypervisor and Virtual Supervisor CSRs
	18.2.1. Hypervisor Status (hstatus) Register
	18.2.2. Hypervisor Trap Delegation (hedeleg and hideleg) Registers
	18.2.3. Hypervisor Interrupt (hvip, hip, and hie) Registers
	18.2.4. Hypervisor Guest External Interrupt Registers (hgeip and hgeie)
	18.2.5. Hypervisor Environment Configuration Register (henvcfg)
	18.2.6. Hypervisor Counter-Enable (hcounteren) Register
	18.2.7. Hypervisor Time Delta (htimedelta) Register
	18.2.8. Hypervisor Trap Value (htval) Register
	18.2.9. Hypervisor Trap Instruction (htinst) Register
	18.2.10. Hypervisor Guest Address Translation and Protection (hgatp) Register
	18.2.11. Virtual Supervisor Status (vsstatus) Register
	18.2.12. Virtual Supervisor Interrupt (vsip and vsie) Registers
	18.2.13. Virtual Supervisor Trap Vector Base Address (vstvec) Register
	18.2.14. Virtual Supervisor Scratch (vsscratch) Register
	18.2.15. Virtual Supervisor Exception Program Counter (vsepc) Register
	18.2.16. Virtual Supervisor Cause (vscause) Register
	18.2.17. Virtual Supervisor Trap Value (vstval) Register
	18.2.18. Virtual Supervisor Address Translation and Protection (vsatp) Register

	18.3. Hypervisor Instructions
	18.3.1. Hypervisor Virtual-Machine Load and Store Instructions
	18.3.2. Hypervisor Memory-Management Fence Instructions

	18.4. Machine-Level CSRs
	18.4.1. Machine Status (mstatus and mstatush) Registers
	18.4.2. Machine Interrupt Delegation (mideleg) Register
	18.4.3. Machine Interrupt (mip and mie) Registers
	18.4.4. Machine Second Trap Value (mtval2) Register
	18.4.5. Machine Trap Instruction (mtinst) Register

	18.5. Two-Stage Address Translation
	18.5.1. Guest Physical Address Translation
	18.5.2. Guest-Page Faults
	18.5.3. Memory-Management Fences

	18.6. Traps
	18.6.1. Trap Cause Codes
	18.6.2. Trap Entry
	18.6.3. Transformed Instruction or Pseudoinstruction for mtinst or htinst
	18.6.4. Trap Return

	Chapter 19. RISC-V Privileged Instruction Set Listings
	Chapter 20. History
	20.1. Research Funding at UC Berkeley

	Bibliography

