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Chapter 8. "Smrnmi" Extension for Resumable Non-Maskable Interrupts, Version 0.5

g Warning! This frozen specification may change before being accepted as standard
by RISC-V International.

The base machine-level architecture supports only unresumable non-maskable interrupts (UNMIs),
where the NMI jumps to a handler in machine mode, overwriting the current mepc and mcause register
values. If the hart had been executing machine-mode code in a trap handler, the previous values in
mepc and mcause would not be recoverable and so execution is not generally resumable.

The Smrnmi extension adds support for resumable non-maskable interrupts (RNMIs) to RISC-V. The
extension adds four new CSRs (mnepc, mncause, mnstatus, and mnscratch) to hold the interrupted
state, and one new instruction, MNRET, to resume from the RNMI handler.

8.1. RNMI Interrupt Signals

The rnmi interrupt signals are inputs to the hart. These interrupts have higher priority than any other
interrupt or exception on the hart and cannot be disabled by software. Specifically, they are not
disabled by clearing the mstatus.MIE register.

8.2. RNMI Handler Addresses
The RNMI interrupt trap handler address is implementation-defined.
RNMI also has an associated exception trap handler address, which is implementation defined.
Dy For example, some implementations might use the address specified in mtvec as the
RNMI exception trap handler.

8.3. RNMI CSRs

This proposal adds additional M-mode CSRs to enable a resumable non-maskable interrupt (RNMI).

MXLEN-1 0
’ mnscratch ‘

MXLEN

Figure 38. Resumable NMI scratch register mnscratch

The mnscratch CSR holds an MXLEN-bit read-write register which enables the NMI trap handler to
save and restore the context that was interrupted.

MXLEN-1 §]
’ mnepc (WARL) ‘
MXLEN

Figure 39. Resumable NMI program counter mnepc.

The mnepc CSR is an MXLEN-bit read-write register which on entry to the NMI trap handler holds the
PC of the instruction that took the interrupt.

The low bit of mnepc (mnepc[@]) is always zero. On implementations that support only IALIGN=32, the
two low bits (mnepc[1:0]) are always zero.
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If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example), then,
whenever TALIGN=32, bit mnepc[ 1] is masked on reads so that it appears to be 0. This masking occurs
also for the implicit read by the MRET instruction. Though masked, mnepc[1] remains writable when
[ALIGN=32.

mnepc is a WARL register that must be able to hold all valid virtual addresses. It need not be capable of
holding all possible invalid addresses. Prior to writing mnepc, implementations may convert an invalid
address into some other invalid address that mnepc is capable of holding.

MXLEN-1 MXLEN-2 0
’ Interrupt | Exception Code (WARL) ‘
1 MXLEN-1

Figure 40. Resumable NMI cause mncause.

The mncause CSR holds the reason for the NMI. If the reason is an interrupt, bit MXLEN-1 is set to 1,
and the NMI cause is encoded in the least-significant bits. If the reason is an interrupt and NMI causes
are not supported, bit MXLEN-1 is set to 1, and zero is written to the least-significant bits. If the reason
is an exception within M-mode that results in a double trap as specified in the Smdbltrp extension, bit
MXLEN-1 is set to O and the least-significant bits are set to the cause code corresponding to the
exception that precipitated the double trap.

MXLEN-1 13 12 11 10 9 8 / 6 a 3 2z 0
’ Reserved | MNPP (WARL)| Reserved| MNPELP | Reserved |MNPV (WARL)| Reserved | NMIE | Reserved ‘
MXLEN-13 2 1 1 1 1 3 1 3

Figure 41. Resumable NMI status register mnstatus.

The mnstatus CSR holds a two-bit field, MNPP, which on entry to the RNMI trap handler holds the
privilege mode of the interrupted context, encoded in the same manner as mstatus.MPP. It also holds
a one-bit field, MNPV, which on entry to the RNMI trap handler holds the virtualization mode of the
interrupted context, encoded in the same manner as mstatus.MPV.

If the Zicfilp extension is implemented, mnstatus also holds the MNPELP field, which on entry to the
RNMI trap handler holds the previous ELP state. When an RNMI trap is taken, MNPELP is set to ELP
and ELP is set to O.

mnstatus also holds the NMIE bit. When NMIE=1, nonmaskable interrupts are enabled. When
NMIE=0, all interrupts are disabled.

When NMIE=0, the hart behaves as though mstatus. MPRV were clear, regardless of the current
setting of mstatus.MPRV.

Upon reset, NMIE contains the value O.

y RNMIs are masked out of reset to give software the opportunity to initialize data
EI structures and devices for subsequent RNMI handling.

Software can set NMIE to 1, but attempts to clear NMIE have no effect.

Normally, only reset sequences will explicitly set the NMIE bit.

E‘ That the NMIE bit is settable does not suffice to support the nesting of RNMIs. To support
this feature in a direct manner would have required allowing software to clear the NMIE
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bit—a design choice that would have contravened the concept of non-maskability.

Software that wishes to minimize the latency until the next RNMI is taken can follow the
top-half/bottom-half model, where the RNMI handler itself only enqueues a task to a task
queue then returns. The bulk of the interrupt servicing is performed later, with RNMIs
enabled.

For the purposes of the WFI instruction, NMIE is a global interrupt enable, meaning that the setting of
NMIE does not affect the operation of the WFI instruction.

The other bits in mnstatus are reserved; software should write zeros and hardware implementations
should return zeros.

8.4. MNRET Instruction

MNRET is an M-mode-only instruction that uses the values in mnepc and mnstatus to return to the
program counter, privilege mode, and virtualization mode of the interrupted context. This instruction
also sets mnstatus.NMIE. If MNRET changes the privilege mode to a mode less privileged than M, it
also sets mstatus.MPRV to O. If the Zicfilp extension is implemented, then if mnstatus.MNPP holds
the value y, MNRET sets ELP to the logical AND of yLPE and mnstatus. MNPELP.

8.5. RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type of RNMI
to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus CSR. The
mnstatus.NMIE bit is cleared, masking all interrupts.

The hart then enters machine-mode and jumps to the RNMI trap handler address.

The RNMI handler can resume original execution using the new MNRET instruction, which restores
the PC from mnepc, the privilege mode from mnstatus, and also sets mnstatus.NMIE, which re-enables
interrupts.

If the hart encounters an exception while executing in M-mode with the mnstatus.NMIE bit clear, the
actions taken are the same as if the exception had occurred while mnstatus.NMIE were set, except that
the program counter is set to the RNMI exception trap handler address.

The Smrnmi extension does not change the behavior of the MRET and SRET instructions.
| yl In particular, MRET and SRET are unaffected by the mnstatus.NMIE bit, and their
execution does not alter the mnstatus.NMIE bit.
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